Sprouse, S. D., King, K. A., Spellane, P. J. \& Watts, R. J. (1984). J. Am. Chem. Soc. 106, 6647-6653.

Strouse, C. (1985). UCLA Crystallographic Computing Package. Department of Chemistry and Biochemistry, Univ. of California, Los Angeles, USA.

Strouse, C. E. (1970). Acta Cryst. A26, 604-608.
Tuggle, R. M. \& Weaver, D. L. (1972). Inorg. Chem. 11, 2237-2242.
Wickramasinghe, W. A., Bird, P. H. \& Serpone, N. (1981). J. Chem. Soc. Chem. Commun. pp. 1284-1286.

Acta Cryst. (1993). C49, 1120-1121

Structure of Bis[(bipyridyl)dicyanatocopper(II)](Cu-Cu)

By M. Kabešová, V. Jorík and M. Dunaj-JurCoo
Department of Inorganic Chemistry, Slovak Technical University, 81237 Bratislava, Czechoslovakia

(Received 20 July 1992; accepted 7 December 1992)

Abstract

Cu}_{2}(\mathrm{NCO})_{4}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right], \quad M_{r}=607.5\), triclinic, $P \overline{1}, a=6.62$ (1), $b=9.99(1), c=10.40$ (1) \AA, $\alpha=118.4$ (1) $, \quad \beta=95.3(1), \quad \gamma=102.8(1)^{\circ}, \quad V=$ 574.1 (19) $\AA^{3}, Z=1, D_{m}=1.74, D_{x}=1.757 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda($ Мо $K \alpha)=0.71073 \AA, \quad \mu=1.98 \mathrm{~mm}^{-1}, \quad F(000)=$ 306, room temperature, $R=0.0490, w R=0.0471$ for 1652 reflections with $I \geq 2 \sigma(I)$. Each Cu atom is involved in tetragonal pyramidal coordination and has an $\mathrm{N}_{4} \mathrm{Cu}$ donor set. The N atoms of the cyanate and bipyridyl ligands define a square plane from which the central Cu atom is slightly displaced in the axial direction. An axial $\mathrm{Cu}-\mathrm{Cu}$ bond ($3.375 \AA$) links the $\left[\mathrm{Cu}(\mathrm{NCO})_{2}(\mathrm{bpy})\right]$ units into centrosymmetric dimers which lie in parallel layers in the crystal structure. The occurrence of the $\mathrm{Cu}-\mathrm{Cu}$ bond may explain why only one bipyridyl ligand can be accommodated in the coordination sphere of each $\mathrm{Cu}^{\mathrm{II}}$ ion.

Experimental. Blue prism-shaped crystals of poor quality; density measured by flotation, dimensions $0.45 \times 0.1 \times 0.065 \mathrm{~mm}$. A Syntex $P 2_{1}$ four-circle diffractometer with graphite-monochromated Mo K α radiation was used for data collection. 20 reflections with $4.91 \leq \theta \leq 12.72^{\circ}$ were used for determination of the lattice parameters. Extinction was ignored. Intensity measurements from $\omega-2 \theta$ scans were made for $0 \leq 2 \theta \leq 55^{\circ} ; h-8$ to $8, k-7$ to 7,10 to 14 . Two standard reflections monitored every 98 measurements; intensity fluctuations did not exceed 1% during the course of the experiment; corrections for decomposition were therefore not applied. 1652 independent reflections with $I \geq 2 \sigma(I)$ were collected (925 unobserved reflections). 196 parameters were refined. The position of the Cu atom was obtained from the Patterson function, positions of the other atoms (including H atoms) from Fourier syntheses.

Anisotropic full-matrix refinement on F for non-H atoms. H atoms were assigned a fixed isotropic displacement parameter $U=0.1 \AA^{2}$ and only their fractional coordinates were refined. $R=0.0490, w R$ $=0.0471, \quad w=k /\left[\sigma^{2}\left(F_{o}\right)+g\left(F_{o}\right)^{2}\right], \quad k=1.0464, \quad g=$ $0.001010, \quad \Delta \rho_{\max }=0.52, \quad \Delta \rho_{\text {min }}=-0.31 \mathrm{e} \AA^{-3}$. $(\Delta / \sigma)_{\max }$ in the final least-squares cycle was 0.120 for non- H atoms and 0.350 for H atoms. Calculations were performed with SHELX76 (Sheldrick, 1976); scattering factors were obtained from International Tables for X-ray Crystallography (1974, Vol. IV). Positional and equivalent isotropic thermal parameters for non-H atoms are in Table 1.* Table 2 gives selected interatomic distances and bond angles.

Related literature. In the crystal structure of $\left[\mathrm{Cu}_{2}(\mathrm{NCO})_{4}(\mathrm{bpy})_{2}\right]$ (Fig. 1) the Cu atom has tetragonal pyramidal coordination. N atoms from the bipyridyl and cyanate ligands form a slightly distorted square plane and there is another Cu atom, Cu^{\prime}, in the axial position, at a distance of 3.375 (6) \AA. The coordination of bipyridyl in the equatorial plane of a $\mathrm{Cu}^{\mathrm{II}}$ coordination polyhedron is uncommon. The cyanate ligands are terminally bound and virtually linear. The copper coordination closely resembles that observed in $\left[\mathrm{Cu}_{2}(\mathrm{NCO})_{4}-\right.$ (phen) $)_{2} \quad$ (phen $=1,10$-phenanthroline) (Jin, Kabešová \& Kožišek, 1991) and is in agreement with the maximum found $c a 16000 \mathrm{~cm}^{-1}$ in the absorption spectrum of the complex.

[^0]Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ for non- H atoms with e.s.d.'s in parentheses

	$U_{\text {eq }}=\left(U_{11}+U_{22}+U_{33}\right) / 3$			
	x	y	z	$U_{\text {eq }}$
Cu	$0.2216(1)$	$0.1536(1)$	$0.0546(1)$	$0.0377(4)$
O1	$0.3352(8)$	$-0.0342(5)$	$-0.3642(5)$	$0.0765(38)$
O2	$0.3234(7)$	$-0.2747(5)$	$-0.1578(5)$	$0.0644(30)$
N1	$0.2547(8)$	$0.1251(6)$	$-0.1362(6)$	$0.0592(35)$
N2	$0.1966(7)$	$-0.0660(5)$	$-0.0032(6)$	$0.0477(28)$
N3	$0.2396(6)$	$0.3822(5)$	$0.1376(5)$	$0.0408(26)$
N4	$0.2246(6)$	$0.2195(5)$	$0.2674(4)$	$0.0364(24)$
C1	$0.2941(9)$	$0.0443(6)$	$-0.2483(7)$	$0.0485(34)$
C2	$0.2627(8)$	$-0.1664(5)$	$-0.0786(5)$	$0.0375(29)$
C31	$0.2536(10)$	$0.4577(7)$	$0.0616(8)$	$0.0608(42)$
C32	$0.2694(12)$	$0.6172(9)$	$0.1303(11)$	$0.0746(66)$
C33	$0.2675(10)$	$0.6991(8)$	$0.2764(10)$	$0.0687(64)$
C34	$0.2506(9)$	$0.6233(6)$	$0.3556(8)$	$0.0488(41)$
C35	$0.2372(7)$	$0.4638(6)$	$0.2827(6)$	$0.0374(31)$
C41	$0.2217(9)$	$0.1274(7)$	$0.3260(7)$	$0.0498(34)$
C42	$0.2212(10)$	$0.1816(9)$	$0.4735(8)$	$0.0641(46)$
C43	$0.2253(10)$	$0.3341(9)$	$0.5643(7)$	$0.0571(47)$
C44	$0.2290(9)$	$0.4313(7)$	$0.5064(6)$	$0.0472(35)$
C45	$0.2283(7)$	$0.3712(6)$	$0.3577(5)$	$0.0322(26)$

Table 2. Selected interatomic distances (\AA) and bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Cu}-\mathrm{Nl}$	1.907 (5)	C33-C34	1.356 (10)
$\mathrm{Cu}-\mathrm{N} 2$	1.942 (5)	C34-C35	1.377 (7)
$\mathrm{Cu}-\mathrm{N} 3$	1.991 (4)	C35-N3	1.335 (6)
$\mathrm{Cu}-\mathrm{N} 4$	1.983 (4)	C35-C45	1.463 (8)
$\mathrm{NI}-\mathrm{Cl}$	1.155 (7)	N4-C41	1.321 (7)
$\mathrm{Cl}-\mathrm{Ol}$	1.183 (6)	C41-C42	1.363 (8)
N2-C2	1.151 (6)	C42-C43	1.350 (10)
$\mathrm{C} 2-\mathrm{O} 2$	1.191 (6)	C43-C44	1.362 (10)
N3-C31	1.323 (8)	C44-C45	1.366 (7)
C31-C32	1.375 (9)	C45-N4	1.344 (6)
C32-C33	1.343 (11)	$\mathrm{Cu}-\mathrm{Cu}^{\prime \prime}$	3.375 (6)
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 4$	170.1 (2)	$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 1$	94.5 (4)
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 3$	172.9 (2)	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{O} 2$	177.3 (6)
$\mathrm{N} 3-\mathrm{Cu}-\mathrm{N} 4$	79.9 (2)	$\mathrm{Nl}-\mathrm{Cl}-\mathrm{Ol}$	176.7 (7)
$\mathrm{N} 3-\mathrm{Cu}-\mathrm{N} 1$	92.5 (2)	$\mathrm{Cu}-\mathrm{N} 2-\mathrm{C} 2$	138.9 (5)
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 4$	93.1 (2)	$\mathrm{Cu}-\mathrm{Nl}-\mathrm{Cl}$	145.2 (5)
Symmetry code: (i) $-x,-y,-z$.			

Fig. 1. Schematic representation of the structure of $\left[\mathrm{Cu}_{2}(\mathrm{NCO})_{4}(\mathrm{bpy})_{2}\right]$ indicating the atom-numbering scheme.

The presence of $\mathrm{Cu}-\mathrm{Cu}$ bonds in $\left[\mathrm{Cu}_{2}(\mathrm{NCO})_{4}-\right.$ (phen $\left.)_{2}\right]$ and $\left[\mathrm{Cu}_{2}(\mathrm{NCO})_{4}(\text { bpy })_{2}\right]$ may explain why each $\mathrm{Cu}^{1 \mathrm{I}}$ ion is associated with only one phen or bpy ligand. In the analogous NCS^{-}and NCSe^{-}complexes the $\mathrm{Cu}^{\text {II }}$ ions remain pentacoordinate but adopt trigonal bipyramidal coordinations involving two heterocyclic ligands and $\mathrm{Cu}-\mathrm{Cu}$ bonding interactions do not occur (Sedov, Kabešová, DunajJurčo, Gažo \& Garaj, 1983; Sedov Kožǐšek, Kabešová, Dunaj-Jurčo, Gažo \& Garaj, 1983).

References

Jin, K. T., KabeŠová, M. \& Kožišek, J. (1991). Collect. Czech. Chem. Commun. 56, 1601-1606.
Sedov, A., KabeŠová, M., Dunaj-Jurčo, M., Gažo, J. \& Garaj, J. (1983). Chem. Zvesti, 37, 43-52.

Sedov, A., Kožísek, J., KabeŠová, M., Dunaj-Juř̌o, M., Gažo, J. \& Garaj, J. (1983). Inorg. Chim. Acta, 75, 73-76.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1993). C49, 1121-1123

Bis[bis(triphenylphosphine)iminium] Dodecacarbonylhexanickelate

By Robert E. Bachman and Kenton H. Whitmire*
Department of Chemistry, Rice University, PO Box 1892, Houston, Texas 77251, USA

(Received 8 September 1992; accepted 16 February 1993)

* Author to whom correspondence should be addressed.

0108-2701/93/061121-03\$06.00
$1.508 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu=$ $15.7 \mathrm{~cm}^{-1}, F(000)=902, T=296 \mathrm{~K}$. Final conventional $R=0.033$ for 5134 observed reflections and 487 variables. The title compound has already been reported with $\mathrm{Me}_{4} \mathrm{~N}$ as the counter-cation. This sample employs bis(triphenylphosphine)iminium
© 1993 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55843 (14 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: MU1023]

